```
Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 46(1) (2014) pp. 1-8
```


Multivalent Functions with Respect to Symmetric Conjugate Points

C. Selvaraj
Department of Mathematics
Presidency College (Autonomous)
Chennai-600005
Tamilnadu, India
Email: pamc9439@yahoo.co.in
K. R. Karthikeyan
Department of Mathematics and Statistics
Caledonian College of Engineering
Muscat, Sultanate of Oman
Email: kr_karthikeyan1979@yahoo.com
G. Thirupathi
Department of Mathematics
R. M. K. Engineering College
R. S. M. Nagar, Kavaraipettai
601206, Tamilnadu, India
Email: gtvenkat79@gmail.com

Abstract

Using convolution, classes of p-valent functions with respect to symmetric conjugate points are introduced. Integral representation and closure properties under convolution of general classes with respect to $(2 j, k)$ symmetric points are investigated.

AMS (MOS) Subject Classification Codes: 30C45

Key Words: meromorphic, multivalent, $(2 j, k)$ - symmetrical functions.

1. Introduction, Definitions And Preliminaries

Let \mathcal{A}_{p} be the class of functions analytic in the open unit $\operatorname{disc} \mathcal{U}=\{z:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \geq 1) \tag{1.1}
\end{equation*}
$$

and let $\mathcal{A}=\mathcal{A}_{1}$.
We denote by $\mathcal{S}^{*}, \mathcal{C}, \mathcal{K}$ and \mathcal{C}^{*} the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in \mathcal{U}. Our favorite references of the field are $[4,5]$ which covers most of the topics in a lucid and economical style.

For the functions $f(z)$ of the form (1.1) and $g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n}$, the Hadamard product (or convloution) of f and g is defined by $(f * g)(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} b_{n} z^{n}$.

Let $f(z)$ and $g(z)$ be analytic in \mathcal{U}. Then we say that the function $f(z)$ is subordinate to $g(z)$ in \mathcal{U}, if there exists an analytic function $w(z)$ in \mathcal{U} such that $|w(z)|<|z|$ and $f(z)=g(w(z))$, denoted by $f(z) \prec g(z)$. If $g(z)$ is univalent in \mathcal{U}, then the subordination is equivalent to $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Let k be a positive integer and $j=0,1,2, \ldots(k-1)$. A domain D is said to be (j, k)-fold symmetric if a rotation of D about the origin through an angle $2 \pi j / k$ carries D onto itself. A function $f \in \mathcal{A}$ is said to be (j, k)-symmetrical if for each $z \in \mathcal{U}$

$$
\begin{equation*}
f(\varepsilon z)=\varepsilon^{j} f(z) \tag{1.2}
\end{equation*}
$$

where $\varepsilon=\exp (2 \pi i / k)$. The family of (j, k)-symmetrical functions will be denoted by \mathcal{F}_{k}^{j}. For every function f defined on a symmetrical subset \mathcal{U} of \mathbb{C}, there exits a unique sequence of (j, k)-symmetrical functions $f_{j, k}(z), j=0,1, \ldots, k-1$ such that

$$
f=\sum_{j=0}^{k-1} f_{j, k}
$$

Moreover,

$$
\begin{equation*}
f_{j, k}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f\left(\varepsilon^{\nu} z\right)}{\varepsilon^{\nu p j}}, \quad\left(f \in \mathcal{A}_{p} ; k=1,2, \ldots ; j=0,1,2, \ldots(k-1)\right) . \tag{1.3}
\end{equation*}
$$

This decomposition is a generalization the well known fact that each function defined on a symmetrical subset \mathcal{U} of \mathbb{C} can be uniquely represented as the sum of an even function and an odd functions (see Theorem 1 of [6]). We observe that $\mathcal{F}_{2}^{1}, \mathcal{F}_{2}^{0}$ and \mathcal{F}_{k}^{1} are wellknown families of odd functions, even functions and k-symmetrical functions respectively. Further, it is obvious that $f_{j, k}(z)$ is a linear operator from \mathcal{U} into \mathcal{U}. The notion of $(j, k)-$ symmetrical functions was first introduced and studied by P. Liczberski and J. Połubiński in [6].

The class of (j, k)-symmetrical functions was extended to the class (j, k)-symmetrical conjugate functions in [8]. For fixed positive integers j and k, let $f_{2 j, k}(z)$ be defined by the following equality

$$
\begin{equation*}
f_{2 j, k}(z)=\frac{1}{2 k} \sum_{\nu=0}^{k-1}\left[\varepsilon^{-\nu p j} f\left(\varepsilon^{\nu} z\right)+\varepsilon^{\nu p j} \overline{f\left(\varepsilon^{\nu} \bar{z}\right)}\right], \quad\left(f \in \mathcal{A}_{p}\right) \tag{1.4}
\end{equation*}
$$

If ν is an integer, then the following identities follow directly from (1.4):

$$
\begin{gather*}
f_{2 j, k}^{\prime}(z)=\frac{1}{2 k} \sum_{\nu=0}^{k-1}\left[\varepsilon^{-\nu p j+\nu} f^{\prime}\left(\varepsilon^{\nu} z\right)+\varepsilon^{\nu p j-\nu} \overline{f^{\prime}\left(\varepsilon^{\nu} \bar{z}\right)}\right] \\
f_{2 j, k}^{\prime \prime}(z)=\frac{1}{2 k} \sum_{\nu=0}^{k-1}\left[\varepsilon^{-\nu p j+2 \nu} f^{\prime \prime}\left(\varepsilon^{\nu} z\right)+\varepsilon^{\nu p j-2 \nu} \overline{f^{\prime \prime}\left(\varepsilon^{\nu} \bar{z}\right)}\right], \tag{1.5}
\end{gather*}
$$

and

$$
\begin{align*}
f_{2 j, k}\left(\varepsilon^{\nu} z\right) & =\varepsilon^{\nu p j} f_{2 j, k}(z), \quad f_{2 j, k}(z)=\overline{f_{2 j, k}(\bar{z})} \\
f_{2 j, k}^{\prime}\left(\varepsilon^{\nu} z\right) & =\varepsilon^{\nu p j-\nu} f_{2 j, k}^{\prime}(z), \quad f_{2 j, k}^{\prime}(\bar{z})=\overline{f_{2 j, k}^{\prime}(z)} \tag{1.6}
\end{align*}
$$

Motivated by the concept introduced by Sakaguchi in [10], recently several subclasses of analytic functions with respect to k-symmetric points were introduced and studied by various authors (see $[1,2,12,13,15,16]$). In this paper, using Hadamard product (or convolution) new classes of functions in \mathcal{A}_{p} with respect to (j, k)-symmetric points are introduced. Throughout this paper, unless otherwise mentioned the function h is a convex
univalent function with a positive real part satisfying $h(0)=1$.
We define the following.
Definition 1. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{S}_{p}^{j, k}(h)$ if and only if it satisfies the condition

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{2 j, k}(z)} \prec h(z) \tag{1.7}
\end{equation*}
$$

where $f_{2 j, k}(z) \neq 0$ and is defined by the equality (1.4). Similarly, we call the class $\mathcal{C}_{p}^{j, k}(h)$ of functions $f \in \mathcal{A}_{p}$ with $f_{2 j, k}^{\prime}(z) \neq 0$ satisfying the subordination condition

$$
\begin{equation*}
\frac{1}{p} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{2 j, k}^{\prime}(z)} \prec h(z) \tag{1.8}
\end{equation*}
$$

Remark 2. Since $f \in \mathcal{A}_{p}$, the condition $f_{2 j, k}(z) \neq 0$ in the Definition 1 is essential as $h(z)$ is assumed to be a function with positive real part.

It is interesting to note that several well known and new subclasses of analytic functions can be obtained as special cases of $\mathcal{S}_{p}^{j, k}(h)$ and $\mathcal{C}_{p}^{j, k}(h)$. Here we list a few of them.

1. If we let $p=j=1$ in definition 1 , then the classes $\mathcal{S}_{p}^{j, k}(h)$ and $\mathcal{C}_{p}^{j, k}(h)$ reduces to $\mathcal{S}_{s c}^{k}(h)$ and $\mathcal{C}_{s c}^{k}(h)$ respectively. The function classes $\mathcal{S}_{s c}^{k}(h)$ and $\mathcal{C}_{s c}^{k}(h)$ were introduced by Wang in [14].
2. If $p=j=k=1$ and $h(z)=\frac{1+\beta z}{1-\alpha \beta z}$ in definition 1 , then the classes $\mathcal{S}_{p}^{j, k}(h)$ and $\mathcal{C}_{p}^{j, k}(h)$ reduces to

$$
\mathcal{S}_{c}^{*}(\alpha, \beta)=\left\{f: f \in \mathcal{A},\left|\frac{z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}+1\right|, z \in \mathcal{U}\right\}
$$

and

$$
\mathcal{C}_{c}^{*}(\alpha, \beta)=\left\{f: f \in \mathcal{A},\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)+\overline{f(\bar{z})})^{\prime}}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{(f(z)+\overline{f(\bar{z})})^{\prime}}+1\right|, z \in \mathcal{U}\right\}
$$ respectively. The class $\mathcal{S}_{c}^{*}(\alpha, \beta)$ was introduced by Sudharsan et. al. in [11].

3. If $p=j=k=1$ and $h(z)=\frac{1+z}{1-z}$ in definition 1 , then the class $\mathcal{S}_{p}^{j, k}(h)$ reduces to the class \mathcal{S}_{c}^{*} investigated by EL Ashwa and Thomas in [3].

Definition 3. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{K}_{p}^{j, k}(h)$ if and only if it satisfies the condition

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{\phi_{2 j, k}(z)} \prec h(z)
$$

where $\phi_{2 j, k}(z) \in \mathcal{S}_{p}^{j, k}(h)$ with $\phi_{2 j, k}(z) \neq 0$ in \mathcal{U}.
Similarly, the class $\mathcal{Q C}_{p}^{j, k}(h)$ consists of functions $f \in \mathcal{A}_{p}$ satisfying the subordination condition

$$
\frac{1}{p} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{\phi_{2 j, k}^{\prime}(z)} \prec h(z)
$$

for some $\phi_{2 j, k}(z) \in \mathcal{S}_{p}^{j, k}(h)$ with $\phi_{2 j, k}^{\prime}(z) \neq 0$.

The general classes $\mathcal{S}_{p}^{j, k}(g, h), \mathcal{C}_{p}^{j, k}(g, h), \mathcal{K}_{p}^{j, k}(g, h)$ and $\mathcal{Q C}_{p}^{j, k}(g, h)$ consists of functions $f \in \mathcal{A}_{p}$ for which $f * g$ respectively belongs to $\mathcal{S}_{p}^{j, k}(h), \mathcal{C}_{p}^{j, k}(h), \mathcal{K}_{p}^{j, k}(h)$ and $\mathcal{Q}^{j, k}(h)$.

For a choice of the fixed function $g(z)=z^{p} /(1-z)$, then the classes $\mathcal{S}_{p}^{j, k}(g, h)$, $\mathcal{C}_{p}^{j, k}(g, h), \mathcal{K}_{p}^{j, k}(g, h)$ and $\mathcal{Q} \mathcal{C}_{p}^{j, k}(g, h)$ reduces respectively to $\mathcal{S}_{p}^{j, k}(h), \mathcal{C}_{p}^{j, k}(h), \mathcal{K}_{p}^{j, k}(h)$ and $\mathcal{Q C}_{p}^{j, k}(h)$.

For $\gamma<1$, the class \mathcal{R}_{γ} of prestarlike functions of order γ is defined by

$$
\mathcal{R}_{\gamma}=\left\{f \in \mathcal{A}: f * \frac{z}{(1-z)^{2-2 \gamma}} \in \mathcal{S}^{*}(\gamma)\right\}
$$

while \mathcal{R}_{1} consists of $f \in \mathcal{A}$ satisfying $\operatorname{Re} f(z) / z>1 / 2$. The well-known result that the classes of starlike functions of order γ and convex functions of order γ are closed under convolution with prestarlike functions of order γ is a consequence of the following:
Lemma 4. [9] Let $\gamma<1, \phi \in \mathcal{R}_{\gamma}$ and $f \in \mathcal{S}^{*}(\gamma)$. Then

$$
\frac{\phi *(H f)}{\phi * f}(\mathcal{U}) \subset \overline{c o}(H(\mathcal{U})),
$$

for any analytic function $H \in \mathcal{H}(\mathcal{U})$, where $\overline{c o}(H(\mathcal{U}))$ denote the closed convex hull $H(\mathcal{U})$.

Using Lemma 4, we have the following result.
Lemma 5. If $\phi(z) / z^{p-1} \in \mathcal{R}_{\gamma}$ and $f(z) \in \mathcal{S}^{*}(\gamma)$. Then

$$
\frac{\phi *(H f)}{\phi * f}(\mathcal{U}) \subset \overline{c o}(H(\mathcal{U}))
$$

for any analytic function $H \in \mathcal{H}(\mathcal{U})$.

2. Inclusion Relationship

Theorem 6. Let h be a convex univalent function satisfying

$$
\operatorname{Reh}(z)>1-\frac{1-\gamma}{p}, \quad(0 \leq \gamma<1)
$$

and $\phi \in \mathcal{A}_{p}$, with $\phi / z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{S}_{p}^{j, k}(g, h)$ for a fixed function g in \mathcal{A}_{p}, then $\phi * f \in \mathcal{S}_{p}^{j, k}(g, h)$.

Proof. From the definition of $\mathcal{S}_{p}^{j, k}(h)$, then for any fixed $z \in \mathcal{U}$ we have

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{f_{2 j, k}(z)} \in h(\mathcal{U}) . \tag{2.1}
\end{equation*}
$$

If we replace z by $\varepsilon^{\nu} z$ in (2.1), then (2.1) will be of the form

$$
\begin{equation*}
\frac{1}{p} \frac{\varepsilon^{\nu} z f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{2 j, k}\left(\varepsilon^{\nu} z\right)} \in h(\mathcal{U}), \quad(z \in \mathcal{U} ; \nu=0,1,2, \ldots, k-1) \tag{2.2}
\end{equation*}
$$

From (2.2), we have

$$
\begin{equation*}
\frac{1}{p} \frac{\overline{\varepsilon^{\nu} \bar{z}} \overline{f^{\prime}\left(\varepsilon^{\nu} \bar{z}\right)}}{\overline{f_{2 j, k}\left(\varepsilon^{\nu} \bar{z}\right)}} \in h(\mathcal{U}), \quad(z \in \mathcal{U} ; \nu=0,1,2, \ldots, k-1) . \tag{2.3}
\end{equation*}
$$

Using the equality (1.6), (2.2) and (2.3) can be rewritten as

$$
\begin{equation*}
\frac{1}{p} \frac{\varepsilon^{\nu-\nu p j} z f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{2 j, k}(z)} \in h(\mathcal{U}), \quad(z \in \mathcal{U} ; \nu=0,1,2, \ldots, k-1) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p} \frac{\varepsilon^{\nu p j-\nu} z \overline{f^{\prime}\left(\varepsilon^{\nu} \bar{z}\right)}}{f_{2 j, k}(z)} \in h(\mathcal{U}), \quad(z \in \mathcal{U} ; \nu=0,1,2, \ldots, k-1) \tag{2.5}
\end{equation*}
$$

Adding (2.4) and (2.5), we get

$$
\begin{equation*}
\frac{1}{p} \frac{z\left[\varepsilon^{\nu-\nu p j} f^{\prime}\left(\varepsilon^{\nu} z\right)+\varepsilon^{\nu p j-\nu} \overline{\left.f^{\prime}\left(\varepsilon^{\nu} \bar{z}\right)\right]}\right.}{f_{2 j, k}(z)} \in h(\mathcal{U}), \quad(z \in \mathcal{U} ; \nu=0,1,2, \ldots, k-1) . \tag{2.6}
\end{equation*}
$$

Let $\nu=0,1,2, \ldots, k-1$ in (2.6) respectively and summing them, we get

$$
\frac{1}{p} \frac{z\left[\frac{1}{2 k} \sum_{\nu=0}^{k-1}\left[\varepsilon^{-\nu p j+\nu} f^{\prime}\left(\varepsilon^{\nu} z\right)+\varepsilon^{\nu p j-\nu} \overline{f^{\prime}}\left(\varepsilon^{\nu} \bar{z}\right)\right]\right.}{f_{2 j, k}(z)} \in h(\mathcal{U}), \quad(z \in \mathcal{U})
$$

Or equivalently,

$$
\frac{1}{p} \frac{z f_{2 j, k}^{\prime}(z)}{f_{2 j, k}(z)} \in h(\mathcal{U}), \quad(z \in \mathcal{U})
$$

that is $f_{2 j, k}(z) \in \mathcal{S}_{p}^{j, k}(h)$.
Set $H(z)$ and $\psi(z)$ by

$$
H(z)=\frac{z f^{\prime}(z)}{p f_{2 j, k}(z)} \quad \text { and } \quad \psi_{2 j, k}(z)=\frac{f_{2 j, k}(z)}{z^{p-1}}
$$

Now $\operatorname{Re} h(z)>1-\frac{1-\gamma}{p}$ yields

$$
\begin{equation*}
\operatorname{Re} \frac{z \psi_{2 j, k}^{\prime}(z)}{\psi_{2 j, k}(z)}=\operatorname{Re} \frac{z f_{2 j, k}^{\prime}(z)}{f_{2 j, k}(z)}-(p-1)>\gamma \tag{2.7}
\end{equation*}
$$

Inequality (2.7) shows that the function $\psi_{2 j, k}(z)$ is starlike of order γ, which we denote by $\mathcal{S}^{*}(\gamma)$. A simple computation shows that

$$
\frac{z(\phi * f)^{\prime}(z)}{p(\phi * f)_{2 j, k}(z)}=\frac{\left(\phi *\left(p^{-1} z f^{\prime}\right)\right)(z)}{\left(\phi * f_{2 j, k}\right)(z)}=\frac{\left(\phi *\left(H f_{2 j, k}\right)\right)(z)}{\left(\phi * f_{2 j, k}\right)(z)} .
$$

Since $\phi / z^{p-1} \in \mathcal{R}_{\gamma}$ and $\psi_{2 j, k} \in \mathcal{S}^{*}(\gamma)$, Lemma 5 yields

$$
\left.\frac{\left(\phi *\left(H f_{2 j, k}\right)\right)(z)}{\left(\phi * f_{2 j, k}\right)(z)}\right) \in \overline{c o}(H(\mathcal{U})) .
$$

The subordination $H \prec h$ implies

$$
\frac{z(\phi * f)^{\prime}(z)}{p(\phi * f)_{2 j, k}(z)} \prec h(z) .
$$

Thus $\phi * f \in \mathcal{S}_{p}^{j, k}(h)$. That is

$$
f \in \mathcal{S}_{p}^{j, k}(h) \quad \Longrightarrow \quad f * g \in \mathcal{S}_{p}^{j, k}(h) \quad \Longrightarrow \quad \phi * f * g \in \mathcal{S}_{p}^{j, k}(h),
$$

or equivalently $\phi * f \in \mathcal{S}_{p}^{j, k}(g, h)$.

Remark 7. Using the condition (1.7) together with the result $f_{2 j, k}(z) \in \mathcal{S}_{p}^{j, k}(h)$ shows that the functions in $\mathcal{S}_{p}^{j, k}(h)$ are contained in $\mathcal{K}_{p}^{j, k}(h)$. In general, $\mathcal{S}_{p}^{j, k}(g, h) \subset \mathcal{K}_{p}^{j, k}(g, h)$.
Theorem 8. Let h be a convex univalent function satisfying

$$
\operatorname{Reh}(z)>1-\frac{1-\gamma}{p}, \quad(0 \leq \gamma<1)
$$

and $\phi \in \mathcal{A}_{p}$, with $\phi / z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{C}_{p}^{j, k}(g, h)$ for a fixed function g in \mathcal{A}_{p}, then $\phi * f \in \mathcal{C}_{p}^{j, k}(g, h)$.
Proof. From the identity

$$
\frac{\left(z(g * f)^{\prime}(z)\right)^{\prime}}{p(g * f)_{2 j, k}^{\prime}(z)}=\frac{z\left(g * p^{-1} z f^{\prime}\right)^{\prime}(z)}{p\left(g * p^{-1} z f^{\prime}\right)_{2 j k}(z)}
$$

we have $f \in \mathcal{C}_{p}^{j, k}(g, h)$ if and only if $\frac{z f^{\prime}}{p} \in \mathcal{S}_{p}^{j, k}(g, h)$ and by Theorem 6 it follows that $\phi *\left(\frac{z f^{\prime}}{p}\right)=\frac{z}{p}(\phi * f)^{\prime}(z) \in \mathcal{S}_{p}^{j, k}(g, h)$. Hence $\phi * f \in \mathcal{C}_{p}^{j, k}(g, h)$.
Remark 9. Analogous to the result in Theorem 6, it can be proved that $f_{2 j, k}(z) \in \mathcal{C}_{p}^{j, k}(h)$. Using this result together with condition (1.7) shows that the functions in $\mathcal{C}_{p}^{j, k}(h)$ are contained in $\mathcal{Q C}_{p}^{j, k}(h)$. In general, $\mathcal{C}_{p}^{j, k}(g, h) \subset \mathcal{Q C}_{p}^{j, k}(g, h)$.

Using the arguments similar to those detailed in Theorem 6 and Theorem 8, we can prove the following two Theorems. We therefore, choose to omit the details involved.

Theorem 10. Let h be a convex univalent function satisfying

$$
\operatorname{Re} h(z)>1-\frac{1-\gamma}{p}, \quad(0 \leq \gamma<1)
$$

and $\phi \in \mathcal{A}_{p}$ with $\phi(z) / z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{K}_{p}^{j, k}(g, h)$, then $\phi * f \in \mathcal{K}_{p}^{j, k}(g, h)$.
Theorem 11. Let h be a convex univalent function satisfying

$$
\operatorname{Reh}(z)>1-\frac{1-\gamma}{p}, \quad(0 \leq \gamma<1)
$$

and $\phi \in \mathcal{A}_{p}$ with $\phi(z) / z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{Q C}_{p}^{j, k}(g, h)$, then $\phi * f \in \mathcal{Q C}_{p}^{j, k}(g, h)$.

3. Integral Representation

Theorem 12. Let $f \in \mathcal{S}_{p}^{j, k}(g, h)$, then we have

$$
\begin{equation*}
s_{2 j, k}(z)=z^{p} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} \tag{3.1}
\end{equation*}
$$

where $s_{2 j, k}(z)=(f * g)_{j, k}(z)$, and $w(z)$ is analytic in \mathcal{U} with $w(0)=0,|w(z)|<1$.
Proof. From the definition of $\mathcal{S}_{p}^{j, k}(g, h)$, we have

$$
\begin{equation*}
\frac{z(f * g)^{\prime}(z)}{p s_{2 j, k}(z)}=\phi(w(z)) \tag{3.2}
\end{equation*}
$$

where $w(z)$ is analytic in \mathcal{U} and $w(0)=0,|w(z)|<1$. Substituting z by $\varepsilon^{\nu} z$ in the equality (3.2) respectively $\left(\nu=0,1,2, \ldots, k-1, \varepsilon^{k}=1\right.$), we have

$$
\begin{equation*}
\frac{\varepsilon^{\nu} z(f * g)^{\prime}\left(\varepsilon^{\nu} z\right)}{p s_{2 j, k}\left(\varepsilon^{\nu} z\right)}=\phi\left(w\left(\varepsilon^{\nu} z\right)\right) \tag{3.3}
\end{equation*}
$$

On simple computation, we get

$$
\begin{equation*}
\frac{\overline{\varepsilon^{\nu} \bar{z}} \overline{(f * g)^{\prime}\left(\varepsilon^{\nu} \bar{z}\right)}}{p \overline{\overline{s_{2 j, k}\left(\varepsilon^{\nu} \bar{z}\right)}}}=\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{z}\right)\right)} . \tag{3.4}
\end{equation*}
$$

Proceeding as in Theorem 6, we have

$$
\frac{z s_{2 j, k}^{\prime}(z)}{p s_{2 j, k}(z)}=\frac{1}{2 k} \sum_{\nu=0}^{k-1}\left[\phi\left(w\left(\varepsilon^{\nu} z\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{z}\right)\right)}\right]
$$

which can be rewritten as

$$
\frac{s_{2 j, k}^{\prime}(z)}{s_{2 j, k}(z)}-\frac{p}{z}=\frac{p}{2 k} \sum_{\nu=0}^{k-1} \frac{1}{z}\left[\phi\left(w\left(\varepsilon^{\nu} z\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{z}\right)\right)}-2\right] .
$$

Integrating this equality, we get

$$
\log \left\{\frac{s_{2 j, k}(z)}{z^{p}}\right\}=\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta
$$

or equivalently,

$$
s_{2 j, k}(z)=z^{p} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} .
$$

This completes the proof of Theorem 12.
Theorem 13. Let $f \in \mathcal{S}_{p}^{j, k}(g, h)$, then we have

$$
s(z)=\int_{0}^{\eta} p z^{p-1} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} \cdot \phi(w(z)) d z
$$

where $s(z)=(f * g)(z)$ and $w(z)$ is analytic in \mathcal{U} with $w(0)=0,|w(z)|<1$.
Proof. Let $f \in \mathcal{S}_{p}^{j, k}(g, h)$. Then from the definition, we have

$$
\begin{aligned}
s^{\prime}(z) & =\frac{p s_{2 j, k}(z)}{z} \cdot \phi(w(z)) \\
& =p z^{p-1} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} \cdot \phi(w(z))
\end{aligned}
$$

Integrating the above equality will prove the assertions of the theorem.
Theorem 14. Let $f \in \mathcal{C}_{p}^{j, k}(g, h)$, then we have

$$
s_{2 j, k}(z)=\int_{0}^{\eta} z^{p-1} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} d z
$$

where $s_{2 j, k}(z)=(f * g)_{2 j, k}(z)$, and $w(z)$ is analytic in \mathcal{U} with $w(0)=0,|w(z)|<1$.
Theorem 15. Let $f \in \mathcal{C}_{p}^{j, k}(g, h)$, then we have
$s(z)=\int_{0}^{\xi} \frac{p}{\eta} \int_{0}^{\eta} z^{p-1} \exp \left\{\frac{p}{2 k} \sum_{\nu=0}^{k-1} \int_{0}^{z} \frac{1}{\zeta}\left[\phi\left(w\left(\varepsilon^{\nu} \zeta\right)\right)+\overline{\phi\left(w\left(\varepsilon^{\nu} \bar{\zeta}\right)\right)}-2\right] d \zeta\right\} d z d \eta$,
where $s(z)=(f * g)(z)$ and $w(z)$ is analytic in \mathcal{U} with $w(0)=0,|w(z)|<1$.

REFERENCES

[1] R. M. Ali, A. O. Badghaish and V. Ravichandran, Multivalent functions with respect to n-ply points and symmetric conjugate points, Comput. Math. Appl. 60 (2010), no. 11, 2926-2935.
[2] R. Chandrashekar et al., Convolutions of meromorphic multivalent functions with respect to n-ply points and symmetric conjugate points, Appl. Math. Comput. (2011),
[3] R. Md. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2 (1987), no. 1, 85-100.
[4] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.
[5] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Dekker, New York, 2003.
[6] P. Liczberski and J. Połubiński, On (j, k)-symmetrical functions, Math. Bohem. 120 (1995), no. 1, 13-28.
[7] M. Haji Mohd et al., Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl. 2009, Art. ID 190291, 9 pp.
[8] K. R. Karthikeyan, Some classes of analytic functions with respect to symmetric conjugate points, Submitted.
[9] S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
[10] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[11] T. V. Sudharsan, P. Balasubrahmanyam and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), no. 1, 57-68.
[12] Z.-G. Wang, C.-Y. Gao and S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322 (2006), no. 1, 97-106.
[13] Z.-G. Wang, Y.-P. Jiang and H. M. Srivastava, Some subclasses of multivalent analytic functions involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 129-146.
[14] Z.-G. Wang and C.-Y. Gao, On starlike and convex functions with respect to $2 k$-symmetric conjugate points, Tamsui Oxf. J. Math. Sci. 24 (2008), no. 3, 277-287.
[15] D.-G. Yang and J.-L. Liu, On Sakaguchi functions, Int. J. Math. Math. Sci. 2003, no. 30, 1923-1931.
[16] S.-M. Yuan and Z.-M. Liu, Some properties of α-convex and α-quasiconvex functions with respect to n symmetric points, Appl. Math. Comput. 188 (2007), no. 2, 1142-1150.

