Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 46(1) (2014) pp. 1-8

Multivalent Functions with Respect to Symmetric Conjugate Points

C. Selvaraj Department of Mathematics Presidency College (Autonomous) Chennai-600005 Tamilnadu, India Email: pamc9439@yahoo.co.in

K. R. Karthikeyan Department of Mathematics and Statistics Caledonian College of Engineering Muscat, Sultanate of Oman Email: kr_karthikeyan1979@yahoo.com

> G. Thirupathi Department of Mathematics R. M. K. Engineering College R. S. M. Nagar, Kavaraipettai 601206, Tamilnadu, India Email: gtvenkat79@gmail.com

Abstract. Using convolution, classes of *p*-valent functions with respect to symmetric conjugate points are introduced. Integral representation and closure properties under convolution of general classes with respect to (2j, k) symmetric points are investigated.

AMS (MOS) Subject Classification Codes: 30C45

Key Words: meromorphic, multivalent, (2j, k)- symmetrical functions.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let \mathcal{A}_p be the class of functions analytic in the open unit disc $\mathcal{U} = \{z : | z | < 1\}$ of the form

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n} \quad (p \ge 1).$$
(1.1)

and let $\mathcal{A} = \mathcal{A}_1$.

We denote by S^* , C, K and C^* the familiar subclasses of A consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in U. Our favorite references of the field are [4, 5] which covers most of the topics in a lucid and economical style.

For the functions f(z) of the form (1.1) and $g(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n$, the Hadamard product (or convolution) of f and g is defined by $(f * g)(z) = z^p + \sum_{n=p+1}^{\infty} a_n b_n z^n$.

Let f(z) and g(z) be analytic in \mathcal{U} . Then we say that the function f(z) is subordinate to g(z) in \mathcal{U} , if there exists an analytic function w(z) in \mathcal{U} such that |w(z)| < |z| and f(z) = g(w(z)), denoted by $f(z) \prec g(z)$. If g(z) is univalent in \mathcal{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Let k be a positive integer and j = 0, 1, 2, ..., (k - 1). A domain D is said to be (j, k)-fold symmetric if a rotation of D about the origin through an angle $2\pi j/k$ carries D onto itself. A function $f \in A$ is said to be (j, k)-symmetrical if for each $z \in U$

$$f(\varepsilon z) = \varepsilon^j f(z), \tag{1.2}$$

where $\varepsilon = \exp(2\pi i/k)$. The family of (j, k)-symmetrical functions will be denoted by \mathcal{F}_k^j . For every function f defined on a symmetrical subset \mathcal{U} of \mathbb{C} , there exits a unique sequence of (j, k)-symmetrical functions $f_{j,k}(z), j = 0, 1, \ldots, k-1$ such that

$$f = \sum_{j=0}^{k-1} f_{j,k}$$

Moreover,

$$f_{j,k}(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \frac{f(\varepsilon^{\nu} z)}{\varepsilon^{\nu p j}}, \quad (f \in \mathcal{A}_p; k = 1, 2, \dots; j = 0, 1, 2, \dots (k-1)).$$
(1.3)

This decomposition is a generalization the well known fact that each function defined on a symmetrical subset \mathcal{U} of \mathbb{C} can be uniquely represented as the sum of an even function and an odd functions (see Theorem 1 of [6]). We observe that \mathcal{F}_2^1 , \mathcal{F}_2^0 and \mathcal{F}_k^1 are wellknown families of odd functions, even functions and k-symmetrical functions respectively. Further, it is obvious that $f_{j,k}(z)$ is a linear operator from \mathcal{U} into \mathcal{U} . The notion of (j, k)symmetrical functions was first introduced and studied by P. Liczberski and J. Połubiński in [6].

The class of (j, k)-symmetrical functions was extended to the class (j, k)-symmetrical conjugate functions in [8]. For fixed positive integers j and k, let $f_{2j,k}(z)$ be defined by the following equality

$$f_{2j,k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu p j} f(\varepsilon^{\nu} z) + \varepsilon^{\nu p j} \overline{f(\varepsilon^{\nu} \bar{z})} \right], \quad (f \in \mathcal{A}_p).$$
(1.4)

If ν is an integer, then the following identities follow directly from (1.4):

$$f_{2j,k}'(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu p j + \nu} f'(\varepsilon^{\nu} z) + \varepsilon^{\nu p j - \nu} \overline{f'(\varepsilon^{\nu} \bar{z})} \right]$$

$$f_{2j,k}''(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu p j + 2\nu} f''(\varepsilon^{\nu} z) + \varepsilon^{\nu p j - 2\nu} \overline{f''(\varepsilon^{\nu} \bar{z})} \right],$$
(1.5)

and

$$f_{2j,k}(\varepsilon^{\nu}z) = \varepsilon^{\nu pj} f_{2j,k}(z), \quad f_{2j,k}(z) = f_{2j,k}(\overline{z}) f_{2j,k}'(\varepsilon^{\nu}z) = \varepsilon^{\nu pj-\nu} f_{2j,k}'(z), \quad f_{2j,k}'(\overline{z}) = \overline{f_{2j,k}'(z)}.$$
(1.6)

Motivated by the concept introduced by Sakaguchi in [10], recently several subclasses of analytic functions with respect to k-symmetric points were introduced and studied by various authors (see [1, 2, 12, 13, 15, 16]). In this paper, using Hadamard product (or convolution) new classes of functions in A_p with respect to (j, k)-symmetric points are introduced. Throughout this paper, unless otherwise mentioned the function h is a convex univalent function with a positive real part satisfying h(0) = 1.

We define the following.

Definition 1. A function $f \in A_p$ is said to be in the class $S_p^{j,k}(h)$ if and only if it satisfies the condition

$$\frac{1}{p} \frac{zf'(z)}{f_{2j,k}(z)} \prec h(z), \tag{1.7}$$

where $f_{2j,k}(z) \neq 0$ and is defined by the equality (1.4). Similarly, we call the class $C_p^{j,k}(h)$ of functions $f \in \mathcal{A}_p$ with $f'_{2j,k}(z) \neq 0$ satisfying the subordination condition

$$\frac{1}{p} \frac{(zf'(z))}{f'_{2j,k}(z)} \prec h(z).$$
(1.8)

Remark 2. Since $f \in A_p$, the condition $f_{2j,k}(z) \neq 0$ in the Definition 1 is essential as h(z) is assumed to be a function with positive real part.

It is interesting to note that several well known and new subclasses of analytic functions can be obtained as special cases of $S_p^{j,k}(h)$ and $C_p^{j,k}(h)$. Here we list a few of them.

- 1. If we let p = j = 1 in definition 1, then the classes $S_p^{j,k}(h)$ and $C_p^{j,k}(h)$ reduces to $S_{sc}^k(h)$ and $C_{sc}^k(h)$ respectively. The function classes $S_{sc}^k(h)$ and $C_{sc}^k(h)$ were introduced by Wang in [14].
- 2. If p = j = k = 1 and $h(z) = \frac{1+\beta z}{1-\alpha\beta z}$ in definition 1, then the classes $S_p^{j,k}(h)$ and $C_p^{j,k}(h)$ reduces to

$$\mathcal{S}_{c}^{*}(\alpha,\,\beta) = \left\{ f:\, f \in \mathcal{A}, \, \left| \frac{zf'(z)}{f(z) + \overline{f(\overline{z})}} - 1 \right| < \beta \left| \frac{\alpha zf'(z)}{f(z) + \overline{f(\overline{z})}} + 1 \right|, \, z \in \mathcal{U} \right\},$$

and

$$\mathcal{C}_{c}^{*}(\alpha,\beta) = \left\{ f: f \in \mathcal{A}, \left| \frac{\left(zf'(z)\right)'}{\left(f(z) + \overline{f(\overline{z})}\right)'} - 1 \right| < \beta \left| \frac{\alpha zf'(z)}{\left(f(z) + \overline{f(\overline{z})}\right)'} + 1 \right|, z \in \mathcal{U} \right\}$$

respectively. The class $\mathcal{S}_c^*(\alpha, \beta)$ was introduced by Sudharsan et. al. in [11].

3. If p = j = k = 1 and $h(z) = \frac{1+z}{1-z}$ in definition 1, then the class $S_p^{j,k}(h)$ reduces to the class S_c^* investigated by EL Ashwa and Thomas in [3].

Definition 3. A function $f \in A_p$ is said to be in the class $\mathcal{K}_p^{j,k}(h)$ if and only if it satisfies the condition

$$\frac{1}{p}\frac{zf'(z)}{\phi_{2j,\,k}(z)} \prec h(z),$$

where $\phi_{2j, k}(z) \in \mathcal{S}_p^{j, k}(h)$ with $\phi_{2j, k}(z) \neq 0$ in \mathcal{U} .

Similarly, the class $\mathcal{QC}_p^{j,k}(h)$ consists of functions $f \in \mathcal{A}_p$ satisfying the subordination condition

$$\frac{1}{p} \frac{\left(zf'(z)\right)'}{\phi'_{2j,\,k}(z)} \prec h(z),$$

for some $\phi_{2j,k}(z) \in \mathcal{S}_p^{j,k}(h)$ with $\phi'_{2j,k}(z) \neq 0$.

The general classes $S_p^{j,k}(g,h)$, $C_p^{j,k}(g,h)$, $\mathcal{K}_p^{j,k}(g,h)$ and $\mathcal{Q}C_p^{j,k}(g,h)$ consists of functions $f \in \mathcal{A}_p$ for which f * g respectively belongs to $S_p^{j,k}(h)$, $C_p^{j,k}(h)$, $\mathcal{K}_p^{j,k}(h)$ and $\mathcal{Q}C_p^{j,k}(h)$.

For a choice of the fixed function $g(z) = z^p/(1-z)$, then the classes $S_p^{j,k}(g, h)$, $C_p^{j,k}(g, h), \mathcal{K}_p^{j,k}(g, h)$ and $\mathcal{QC}_p^{j,k}(g, h)$ reduces respectively to $S_p^{j,k}(h), \mathcal{C}_p^{j,k}(h), \mathcal{K}_p^{j,k}(h)$ and $\mathcal{QC}_p^{j,k}(h)$.

For $\gamma < 1$, the class \mathcal{R}_{γ} of prestarlike functions of order γ is defined by

$$\mathcal{R}_{\gamma} = \left\{ f \in \mathcal{A} : f * \frac{z}{(1-z)^{2-2\gamma}} \in \mathcal{S}^{*}(\gamma) \right\},$$

while \mathcal{R}_1 consists of $f \in \mathcal{A}$ satisfying $\operatorname{Re} f(z)/z > 1/2$. The well-known result that the classes of starlike functions of order γ and convex functions of order γ are closed under convolution with prestarlike functions of order γ is a consequence of the following:

Lemma 4. [9] Let $\gamma < 1$, $\phi \in \mathcal{R}_{\gamma}$ and $f \in \mathcal{S}^*(\gamma)$. Then

$$\frac{\phi * (Hf)}{\phi * f}(\mathcal{U}) \subset \overline{co}(H(\mathcal{U})),$$

for any analytic function $H \in \mathcal{H}(\mathcal{U})$, where $\overline{co}(H(\mathcal{U}))$ denote the closed convex hull $H(\mathcal{U})$.

Using Lemma 4, we have the following result.

Lemma 5. If $\phi(z)/z^{p-1} \in \mathcal{R}_{\gamma}$ and $f(z) \in \mathcal{S}^*(\gamma)$. Then

$$\frac{\phi * (Hf)}{\phi * f}(\mathcal{U}) \subset \overline{co}(H(\mathcal{U})),$$

for any analytic function $H \in \mathcal{H}(\mathcal{U})$.

2. INCLUSION RELATIONSHIP

Theorem 6. Let h be a convex univalent function satisfying

$$Reh(z) > 1 - \frac{1 - \gamma}{p}, \quad (0 \le \gamma < 1),$$

and $\phi \in \mathcal{A}_p$, with $\phi/z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{S}_p^{j,k}(g,h)$ for a fixed function g in \mathcal{A}_p , then $\phi * f \in \mathcal{S}_p^{j,k}(g,h)$.

Proof. From the definition of $\mathcal{S}_p^{j,k}(h)$, then for any fixed $z \in \mathcal{U}$ we have

$$\frac{1}{p} \frac{zf'(z)}{f_{2j,k}(z)} \in h(\mathcal{U}).$$
(2.1)

If we replace z by $\varepsilon^{\nu} z$ in (2.1), then (2.1) will be of the form

$$\frac{1}{p} \frac{\varepsilon^{\nu} z f\left(\varepsilon^{\nu} z\right)}{f_{2j,k}(\varepsilon^{\nu} z)} \in h\left(\mathcal{U}\right), \quad (z \in \mathcal{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1).$$
(2.2)

From (2.2), we have

$$\frac{1}{p} \frac{\overline{\varepsilon^{\nu} \overline{z}} \,\overline{f'(\varepsilon^{\nu} \overline{z})}}{\overline{f_{2j,k}(\varepsilon^{\nu} \overline{z})}} \in h(\mathcal{U}), \quad (z \in \mathcal{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1).$$
(2.3)

Using the equality (1.6), (2.2) and (2.3) can be rewritten as

$$\frac{1}{p} \frac{\varepsilon^{\nu-\nu p j} z f'(\varepsilon^{\nu} z)}{f_{2j,k}(z)} \in h\left(\mathcal{U}\right), \quad (z \in \mathcal{U}; \, \nu = 0, \, 1, \, 2, \, \dots, \, k-1), \tag{2.4}$$

and

$$\frac{1}{p} \frac{\varepsilon^{\nu p j - \nu} z \overline{f'(\varepsilon^{\nu} \overline{z})}}{f_{2j,k}(z)} \in h(\mathcal{U}), \quad (z \in \mathcal{U}; \nu = 0, 1, 2, \dots, k - 1).$$
(2.5)

Adding (2.4) and (2.5), we get

$$\frac{1}{p} \frac{z\left[\varepsilon^{\nu-\nu pj} f'(\varepsilon^{\nu} z) + \varepsilon^{\nu pj-\nu} \overline{f'(\varepsilon^{\nu} \overline{z})}\right]}{f_{2j,k}(z)} \in h\left(\mathcal{U}\right), \quad (z \in \mathcal{U}; \nu = 0, 1, 2, \dots, k-1).$$
(2.6)

Let $\nu = 0, 1, 2, \dots, k - 1$ in (2.6) respectively and summing them, we get

$$\frac{1}{p} \frac{z \left[\frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\varepsilon^{-\nu p j + \nu} f'(\varepsilon^{\nu} z) + \varepsilon^{\nu p j - \nu} \overline{f'(\varepsilon^{\nu} \overline{z})}\right]\right]}{f_{2j,k}(z)} \in h\left(\mathcal{U}\right), \quad (z \in \mathcal{U}).$$

Or equivalently,

$$\frac{1}{p} \frac{z f_{2j,k}^{'}(z)}{f_{2j,k}(z)} \in h\left(\mathcal{U}\right), \quad (z \in \mathcal{U}),$$

that is $f_{2j, k}(z) \in \mathcal{S}_p^{j, k}(h)$. Set H(z) and $\psi(z)$ by

$$H(z) = \frac{zf'(z)}{pf_{2j,k}(z)}$$
 and $\psi_{2j,k}(z) = \frac{f_{2j,k}(z)}{z^{p-1}}.$

Now $\operatorname{Re} h(z) > 1 - \frac{1-\gamma}{p}$ yields

$$Re\frac{z\psi'_{2j,k}(z)}{\psi_{2j,k}(z)} = Re\frac{zf'_{2j,k}(z)}{f_{2j,k}(z)} - (p-1) > \gamma.$$
(2.7)

Inequality (2.7) shows that the function $\psi_{2j,k}(z)$ is starlike of order γ , which we denote by $S^*(\gamma)$. A simple computation shows that

$$\frac{z\left(\phi*f\right)'(z)}{p(\phi*f)_{2j,\,k}(z)} = \frac{\left(\phi*\left(p^{-1}zf'\right)\right)(z)}{\left(\phi*f_{2j,\,k}\right)(z)} = \frac{\left(\phi*\left(Hf_{2j,\,k}\right)\right)(z)}{\left(\phi*f_{2j,\,k}\right)(z)}.$$

Since $\phi/z^{p-1} \in \mathcal{R}_{\gamma}$ and $\psi_{2j, k} \in \mathcal{S}^*(\gamma)$, Lemma 5 yields

/

$$\frac{\left(\phi * \left(H f_{2j,k}\right)\right)(z)}{\left(\phi * f_{2j,k}\right)(z)} \in \overline{co}(H(\mathcal{U})).$$

The subordination $H \prec h$ implies

$$\frac{z\left(\phi*f\right)'(z)}{p(\phi*f)_{2j,\,k}(z)} \prec h(z).$$

Thus $\phi * f \in \mathcal{S}_p^{j,k}(h)$. That is

$$f\in \mathcal{S}_p^{j,\,k}(h) \quad \Longrightarrow \quad f\ast g\in \mathcal{S}_p^{j,\,k}(h) \quad \Longrightarrow \quad \phi\ast f\ast g\in \mathcal{S}_p^{j,\,k}(h),$$

or equivalently $\phi * f \in \mathcal{S}_p^{j, k}(g, h)$.

Remark 7. Using the condition (1.7) together with the result $f_{2j,k}(z) \in S_p^{j,k}(h)$ shows that the functions in $\mathcal{S}_p^{j,k}(h)$ are contained in $\mathcal{K}_p^{j,k}(h)$. In general, $\mathcal{S}_p^{j,k}(g,h) \subset \mathcal{K}_p^{j,k}(g,h)$.

Theorem 8. Let h be a convex univalent function satisfying

$$Reh(z) > 1 - \frac{1 - \gamma}{p}, \quad (0 \le \gamma < 1),$$

and $\phi \in \mathcal{A}_p$, with $\phi/z^{p-1} \in \mathcal{R}_\gamma$. If $f \in \mathcal{C}_p^{j,k}(g,h)$ for a fixed function g in \mathcal{A}_p , then $\phi * f \in \mathcal{C}_p^{j,\,k}(g,\,h).$

Proof. From the identity

$$\frac{(z(g*f)'(z))'}{p(g*f)'_{2j,k}(z)} = \frac{z\left(g*p^{-1}zf'\right)'(z)}{p\left(g*p^{-1}zf'\right)_{2j,k}(z)},$$

we have $f \in \mathcal{C}^{j,\,k}_p(g,\,h)$ if and only if $\frac{zf'}{p} \in \mathcal{S}^{j,\,k}_p(g,\,h)$ and by Theorem 6 it follows that $\phi * \left(\frac{zf'}{p}\right) = \frac{z}{p}(\phi * f)'(z) \in \mathcal{S}_p^{j,k}(g,h)$. Hence $\phi * f \in \mathcal{C}_p^{j,k}(g,h)$.

Remark 9. Analogous to the result in Theorem 6, it can be proved that $f_{2j,k}(z) \in \mathcal{C}_p^{j,k}(h)$. Using this result together with condition (1.7) shows that the functions in $\mathcal{C}_p^{j,k}(h)$ are contained in $\mathcal{QC}_p^{j,k}(h)$. In general, $\mathcal{C}_p^{j,k}(g,h) \subset \mathcal{QC}_p^{j,k}(g,h)$.

Using the arguments similar to those detailed in Theorem 6 and Theorem 8, we can prove the following two Theorems. We therefore, choose to omit the details involved.

Theorem 10. Let h be a convex univalent function satisfying

$$Re h(z) > 1 - \frac{1 - \gamma}{p}, \quad (0 \le \gamma < 1),$$

and $\phi \in \mathcal{A}_p$ with $\phi(z)/z^{p-1} \in \mathcal{R}_{\gamma}$. If $f \in \mathcal{K}_p^{j,k}(g,h)$, then $\phi * f \in \mathcal{K}_p^{j,k}(g,h)$.

Theorem 11. Let h be a convex univalent function satisfying

$$Re h(z) > 1 - \frac{1 - \gamma}{p}, \quad (0 \le \gamma < 1),$$

and $\phi \in \mathcal{A}_p$ with $\phi(z)/z^{p-1} \in \mathcal{R}_\gamma$. If $f \in \mathcal{QC}_p^{j,k}(g,h)$, then $\phi * f \in \mathcal{QC}_p^{j,k}(g,h)$.

3. INTEGRAL REPRESENTATION

Theorem 12. Let $f \in \mathcal{S}_p^{j,k}(g, h)$, then we have

$$s_{2j,k}(z) = z^p \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\},\tag{3.1}$$

where $s_{2j,k}(z) = (f * g)_{j,k}(z)$, and w(z) is analytic in U with w(0) = 0, |w(z)| < 1. *Proof.* From the definition of $\mathcal{S}_p^{j,k}(g, h)$, we have

$$\frac{z(f*g)'(z)}{p s_{2j,k}(z)} = \phi(w(z)), \qquad (3.2)$$

where w(z) is analytic in \mathcal{U} and w(0) = 0, |w(z)| < 1. Substituting z by $\varepsilon^{\nu} z$ in the equality (3.2) respectively ($\nu = 0, 1, 2, \ldots, k - 1, \varepsilon^k = 1$), we have

$$\frac{\varepsilon^{\nu} z \left(f * g\right)'(\varepsilon^{\nu} z)}{p \, s_{2j,\,k}(\varepsilon^{\nu} z)} = \phi\left(w(\varepsilon^{\nu} z)\right) \tag{3.3}$$

On simple computation, we get

$$\frac{\overline{\varepsilon^{\nu}\overline{z}}\left(f*g\right)'\left(\varepsilon^{\nu}\overline{z}\right)}{p\,\overline{s_{2j,\,k}(\varepsilon^{\nu}\overline{z}\,)}} = \overline{\phi\left(w(\varepsilon^{\nu}\overline{z})\right)}.$$
(3.4)

Proceeding as in Theorem 6, we have

$$\frac{zs'_{2j,k}(z)}{ps_{2j,k}(z)} = \frac{1}{2k} \sum_{\nu=0}^{k-1} \left[\phi\left(w(\varepsilon^{\nu}z)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{z})\right)} \right],$$

which can be rewritten as

$$\frac{s'_{2j,k}(z)}{s_{2j,k}(z)} - \frac{p}{z} = \frac{p}{2k} \sum_{\nu=0}^{k-1} \frac{1}{z} \left[\phi\left(w(\varepsilon^{\nu} z)\right) + \overline{\phi\left(w(\varepsilon^{\nu} \overline{z})\right)} - 2 \right].$$

Integrating this equality, we get

$$\log\left\{\frac{s_{2j,k}(z)}{z^p}\right\} = \frac{p}{2k}\sum_{\nu=0}^{k-1}\int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta,$$

or equivalently,

$$s_{2j,k}(z) = z^p \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\}.$$

This completes the proof of Theorem 12.

Theorem 13. Let $f \in \mathcal{S}_p^{j, k}(g, h)$, then we have

$$s(z) = \int_0^{\eta} p \, z^{p-1} \, \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] \, d\zeta\right\} \cdot \phi\left(w(z)\right) \, dz$$

where s(z) = (f * g)(z) and w(z) is analytic in \mathcal{U} with w(0) = 0, |w(z)| < 1.

Proof. Let $f \in \mathcal{S}_p^{j,\,k}(g,\,h).$ Then from the definition, we have

$$s'(z) = \frac{p \, s_{2j,\,k}(z)}{z} \cdot \phi\left(w(z)\right)$$
$$= p \, z^{p-1} \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] \, d\zeta\right\} \cdot \phi\left(w(z)\right).$$

Integrating the above equality will prove the assertions of the theorem.

Theorem 14. Let $f \in C_p^{j,k}(g, h)$, then we have

$$s_{2j,k}(z) = \int_0^{\eta} z^{p-1} \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\} dz,$$

where $s_{2j,k}(z) = (f * g)_{2j,k}(z)$, and w(z) is analytic in \mathcal{U} with w(0) = 0, |w(z)| < 1. **Theorem 15.** Let $f \in \mathcal{C}_p^{j,k}(g, h)$, then we have

$$s(z) = \int_0^{\xi} \frac{p}{\eta} \int_0^{\eta} z^{p-1} \exp\left\{\frac{p}{2k} \sum_{\nu=0}^{k-1} \int_0^z \frac{1}{\zeta} \left[\phi\left(w(\varepsilon^{\nu}\zeta)\right) + \overline{\phi\left(w(\varepsilon^{\nu}\overline{\zeta})\right)} - 2\right] d\zeta\right\} dz \, d\eta,$$

where $s(z) = (f * g)(z)$ and $w(z)$ is analytic in \mathcal{U} with $w(0) = 0$, $|w(z)| < 1$.

7

REFERENCES

- R. M. Ali, A. O. Badghaish and V. Ravichandran, Multivalent functions with respect to *n*-ply points and symmetric conjugate points, Comput. Math. Appl. 60 (2010), no. 11, 2926–2935.
- [2] R. Chandrashekar et al., Convolutions of meromorphic multivalent functions with respect to n-ply points and symmetric conjugate points, Appl. Math. Comput. (2011),
- [3] R. Md. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc. 2 (1987), no. 1, 85–100.
- [4] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.
- [5] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Dekker, New York, 2003.
- [6] P. Liczberski and J. Połubiński, On (*j*, *k*)-symmetrical functions, Math. Bohem. **120** (1995), no. 1, 13–28.
 [7] M. Haji Mohd et al., Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl.
- 2009, Art. ID 190291, 9 pp.
- [8] K. R. Karthikeyan, Some classes of analytic functions with respect to symmetric conjugate points, Submitted.
- [9] S. Ruscheweyh, *Convolutions in geometric function theory*, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
- [10] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.
- [11] T. V. Sudharsan, P. Balasubrahmanyam and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), no. 1, 57–68.
- [12] Z.-G. Wang, C.-Y. Gao and S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322 (2006), no. 1, 97–106.
- [13] Z.-G. Wang, Y.-P. Jiang and H. M. Srivastava, Some subclasses of multivalent analytic functions involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 129–146.
- [14] Z.-G. Wang and C.-Y. Gao, On starlike and convex functions with respect to 2*k*-symmetric conjugate points, Tamsui Oxf. J. Math. Sci. **24** (2008), no. 3, 277–287.
- [15] D.-G. Yang and J.-L. Liu, On Sakaguchi functions, Int. J. Math. Math. Sci. 2003, no. 30, 1923–1931.
- [16] S.-M. Yuan and Z.-M. Liu, Some properties of α-convex and α-quasiconvex functions with respect to nsymmetric points, Appl. Math. Comput. 188 (2007), no. 2, 1142–1150.